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The paper deals with the problem of motion of a plane and a three-dimensional 

piston of arbitrary, sufficiently smooth shape, through a gas at rest, when the pis- 

ton has zero normal initial velocity and nonzero normal acceleration. solutions 
in the neighborhood of curvilinear weak discontinuities which detach from the 

piston at the initial instant and move through the gas at rest, are given in an 

approximate form. Exact formulas are obtained for the limiting times of existence 
of smooth potential flows near the weak discontinuities and their dependence on 
the geometry of the piston, and on the magnitude of the prescribed acceleration 

under the assumption that the weak discontinuity is not overtaken by the resulting 
perturbations. Certain properties of the flows near the weak discontinuities are 

studied. 

1, It is a well known fact that, when a piston is advanced into a homogeneous poly- 
tropic gas at rest contained in a semi-infinite rectilinear channel (5 > 0) according 
to the rule z = f (t) , its motion beginning at the instant t = u with zero initial velo- 

city and positive initial acceleration (f (0) = f' (0) =O, f" (0) > 0), then the smooth 
solution between the piston and the weak discontinuity moving through the stationary 
gas with the speed of sound, will exist only for a limited period of time Cl]. The com- 

pression wave formed is the Riemann wave and a shock wave will appear in the flow at 

some t = t* > 0 . If the infinite gradients of the gasdynamic quantities appear direct- 
ly at the line of weak discontinuity (this will occur e. g. when the piston moves accord- 

ing to the law z = at2 where the acceleration a > 0 is constant), then the instant t* 
of disruption of the corresponding Riemann wave is easily found to be 

t*= f 2 
= 0 fl)a (7 + 1) I wo I 

(1-l) 

where Y is the adiabatic index in the gas equation of state and w,, is the acceleration 
of the piston at t = 0. 

We shall consider a more general problem of determining the time t*‘of the onset of 
disruption of the potential flow occurring directly on the surface of weak discontinuity, 
and of constructing an approximate solution near the weak discontinuity for the case 
when pistons of arbitrary shape advance into the gas and the resulting flows are two- or 
three-dimensional. 

Let the (sufficiently smooth) surface s,, divide a three-dimensional x1, x2, sa-space 
into two parts, one of which is filled with a homogeneous polytropic gas at rest, and let 
the speed of sound in this part be equal to c _= 1. At the instant t = 0 the piston S, 

begins to advance into the gas (the surface S,, corresponds to the initial position of the 
piston) according to some law in such a manner, that at t = 0 the normal velocity of 
motion V, is zero and the normal acceleration W,is nonzero everywhere. It is clear 
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that a compression wave will begin to move through the unperturbed gas. This wave 

will be bounded on one side by the piston surface s;, and on the other side by the sur- 
face Rt of the weak discontinuity moving with a unit normal velocity across the gas at 
rest. The form of the surface R, will depend only on the geometry of s, The flow will 
be isentropic and potential until the moment when strong discontinuities appear within 

it. 
The flow potential @ (zl, x2, za, t) will satisfy, in the general three-dimensional 

case, the equation (I.21 
“,, + 2 2 @%i@Xii + 2 2 (I - 6ik) @)“iQ)Xkm)2iXk - 2 (@ - @)xi2) (DXjUi = O 

i ik i 

where the subscripts accompanying @ denote differentiation with respect to the indi- 
cated variables, aik is the Kronecker delta and 

H = c2 = + c jjr - at - + 2 Q2) , 1 
x=r-_1, 1M = const (1.3) 

We shall study the behavior of the solutions of the stated problem near the surface 
R, along which we have cDXi = ui = 0 where ui denote the components of the velo- 
city vector u. 

Note 1.1. The problem of adjacency of unstable plane and three-dimensional 
gas flows to a region of rest across a weak discontinuity was studied in @. 31. However, 
only the case of rarefaction waves (withdrawal of pistons) was studied in these papers 

and only the class of double waves was considered to construct a solution near the weak 
discontinuity. This led to restricting the form of the surface R, which had to be devel- 

opable at any instant of time. 
To begin with we shall study the case of a plane, parallel unsteady motion when the 

subscripts in (l. 2) are i, k = 1, 2. In the following we shall use for convenience the 
independent variables t, u,,usin(l.2)(assuming.that u,and u2are functionally independent 

near R,). The change of variables is easily effected with the help of the Legendre trans- 
formations, using the function w (z+, u2, t) given by 

Y = XIUI + x+2 - CD + Mt 0.4) 

The final expression for y (+, U2, t> is 

YY,, P%y22 - y’122) + [@ - WI, - %)21y22 + 

+ 2 m,, - 4 w,, - u2) y’12 + 18 - (5, - U,)“lY,I = 0 0.5) 

and we have 

(Eq. (1.5) was already obtained in [4]). 
Since a point corresponding to the region of rest in the hodograph ul, u2-plane is the 

point (0, 0). it is expedient fo pass in (1.5) and (1.6) to the polar coordinates z+ = 
= r cos rp and u2 = r sin cp. Then the boundary separating the perturbed motion 
from the region of rest will have a corresponding line in the r, cp-variables, given by 

r = 0. The equation for Y (r, cp, I) has the form 

YFpl,. (-Pf!,;la - r-“YQ2 + rV2YVVYtr + rmlYrYrr + 2r-3Yr,0Yq) + 

+ x-l (YI - ‘j2r’) [Y,, + relYr + r-TWO] - [r-2Yt12Yp.g + r-1Y,12’Y,] + 
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-!- =2yrty,,y,, - 2r-3Y,,Y,,YP,-r-"Y,12y + 2(p-ly,,y,, + (1 7) 

-I- 'k',,Y,] - +yTptyt.P + PYQY,) ';,, - ryfP, =o 

while (1.6) is replaced (‘i = 1, 2 ), respectively, by 

Jr = ‘P’, COSCp - F‘YI', sincp, x2 = Yr sin 0, + r-‘\T, cos cp (1.8) 

When r ==I 0 , Eqs. (1.8) determine the motion of the weak discontinuity, consequently 

the limit lim r-l Y, = l-1 fcp, t) as r--f 0 must exist. 
We further assume that near the surface R, the fourth order derivatives of Y (r, cp7 t) 

in which the differentiation has been performed twice with respect to each independent 

variable, are all continuous. This assumption of the smoothness of the flow near R, is in 
fact realized in a number of real flows, e. g. in one-dimensional flows, provided that the 

piston moves sufficiently smoothly Cl], or in the class of plane and three-dimensional 

double waves 12. 31. In particular, the a~umption just made implies that the perturba- 
tions in the flow characterized by first order discontinuities in ur, us and e do not over- 
take the weak discontinuity I = 0. 

bet us write the function Y (r, cp, t) in the form 

Y (rt cp, t) = Y (0, cp* t) + Yr (0, cp, t) r + ‘I$-” rpr Q-17 ypl t) (1.9) 

O<r,<r 

Assuming ‘4, (0, rp, t) = r (cp, t) and utilizing the previous assumptions we find, that 

H(rp, 4 = rV PK (0, rp, 4 = 0). The motion of the weak discontinuity will 
therefore be described by the following equations obtained from (1.8) 

5r = l? cos ‘p - r, sin cp, X% = r sin cp + r, cos cp (1.10) 

Computing the normal velocity of motion of the weak discontinuity (1.10) (which by 

definition is equal to unity) we arrive at the condition rt = 1 (generally speaking the 

condition 1 I’, 1 - 1 should be obtained, but taking into account that t can also assume 
negative values makes it possible to limit oneself to the case rt = 1 without loss of 

generality), Thus we have 
r (CP, I) = 15 f (CP) (Lil) 

Here f (q) is an arbitrary function which can be used in assigning an arbitrary form to 

the weak discontinuity at t = 0 in the following manner 

zI = f (cp) cos ‘p - f’ (cc) sin cp, x2 = f (cp) sin cp -t f’ (cp) cos cp (1.12) 

Let us now estimate the order of all the terms of (1.7) near r = 0, using the repre- 

sentation (I. 9) together with the analogous representations for the first and second deri- 
vatives of ‘Y {r, up, t). For the first order derivatives we obtain 

‘I’, = 4 (cp) f 1/2r2y;prT (~a, (P, t), YJ P = t + f(V) + r‘P7.l. (r3, cp, t) (1.13) 
‘p-, = K, + r + 11’2’2’rrrrt (7-4, ‘P., t), K, = const 

(all fast terms in the Taylor expansions in powers of r contain derivatives of Y (r, cp, t) 
in which the differentiation with respect to r. 0 < fk < T) has been performed twice). 

Similar formulas are easily obtained for the second order partial derivatives of y (r, 

V, I) with respect to all its variables (for Y,, no expansion is necessary). Retaining 

in (1.7) the terms of the 0 (I) -order and neglecting the terms of the o (1) -order we 
obtain the following approximate relation : 
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Y,, (r, cp, t) + (Y + 1) (t + f + f”) - 2 (t + f + f”) yrrt bj, cp, t) = 0 (1.14) 

We find here that the only terms of (1.7) contributing to (1.14) are those contained with- 

in the square brackets. Setting in (1.14) 

r = 0, ‘J’y,, (0, cp, t) = 2’ (cp, t) 

we obtain an exact differential equation for determining the structure of T (cp, t) 

T + (y + 1) (t + f + f”) - 2 (t + f f f”) T, = 0 (1.15) 

The latter equation is easily integrated, yielding the following expression for the function 

Yy,, (0, 99 t) : 

Y,, (0, cp, t) = C (cp) (t + f + f’)“z + (y + 1) (t + f + f”) (1.46) 
where c (9) is an arbitrary function. 

It should be noted that in the t, r, cp -space the plane r = 0 will be a characteristic 

surface for (1.7) and that the Cauchy data will determine the function Yrr (0, cp, t) 
nonuniquely when r = 0 . The function C (q) can be defined from the condition that 

the normal acceleration of the piston at the time t = 0 is given. Indeed, obtaining 
the derivative dr / dt at r = 0 from (1.8) we find, that either 

y+t + y.P,, $- = 0 for r = 0 
or 

(1.17) 

Let us set t?r / dt = - W (cp) w h en r = 0 and t = 0. From (1.17) it follows that 
- Jv (cp) is the value of the normal acceleration of the piston at t - 0, since we know 
[3] that the instantaneous streamlines of the perturbed flow are always orthogonal to the sur- 

face of the weak discontinuity moving across the region of rest, .,and the vector (COS q, 

sin cp) is orthogonal to R,. Thus using (1.16) and (1.17) we obtain 

c (cp) = (f + f”Y’* (W-l b&J) - (y + 1) (f + f”>) (1.18) 

We have the following approximate representation for the function Y (r, cp, t) near 

R, (we replace W,, (rl, rp, t) in (1.9) by Y,, (0, cp, t): 

Y (r, cp, t) = K. + K,t + (t + f (cp)) r + I/2 [C (cp) (t + f + f”P + 
+ (T + 1) (t + f + f”)l F2 (Ko, K1=const) (kl9) 

where C (cp) is given by (1.18). In this connection, the flow in the physical ~1, z2, t - 
space is constructed according to the formulas 

XI= :t+f(@+F[C(T)(t+f +f”)“‘+(?‘+l)(t+f +f?l)COS’J’- 

- (f’ (9) + + F IIc’ ((PI @ + f + f”>“’ + c (@ 
f’ff”’ + 

v+f+f”)“’ 
+ (r + 1) (f’ + f”)lMw 

+ f’(T) + $F [c’ (Cp) (t + f + f?“’ + 6’ (Cp) 
f’f f”’ + 

2 (t + f + f “)“’ 
+ (r+ i)(f’ +fTncoscP (1.20) 

We note that the expression t f f + f” = R (cp, t) represents the radius of curvature 



442 A. F. S idorov 

of the surface R, (or of some curve on the plane 1 = const). This follows at once from 
(1.20) when r = 0 (we assume that f + f” > 0). 

The instant t* of the beginning of disruption of the potential flow can be determined 
directly on R, by finding the numerically smallest root of the equationYY,, (6, cp, t)= 

= 0 (the derivative ar / dt then becoming infinite). The final expressions for t” are 
as follows: for 

we have 
t*<o,Iv(cp)>O,~V(cp)(f+f”)>1i(r+1) 

while for 

we have 
t* > 0, IV (cp) < 0 

t* = min. 
-1 

’ (r + i)‘Iv (cp) 1 -VT+ I)- rV(&+T] 
(1.22) 

Using the formulas (1.21) and (1.22) we can also obtain easily the position at which the 
potential flow begins to break down. If the minimum value of t* is reached according 
to (1.21) for t* = - Inin, (f f f”), then the radius of curvature becomes zero at 
some point of R, (in the one-dimensional case this corresponds to the focusing of the 

weak discontinuity on the axis of symmetry). 
let us consider in more detail the case of a cylindrical piston of radius R,, which 

begins to move into the gas with a constant acceleration IV0 > 0. In accordance with 

formulas (1.21) and (1.22) we obtain 

it*1 = [w+ 1) -&I I TVo (T + 1)’ 
when IV&, > h 

1 t* 1 = R,, 
1 

when W,R, < - 
r+l 

(1.23) 

for the case when the gas is contained within an infinite cylindrical tube whose walls 
begin to move inwards, and 

t* = L zz (r + 1) + -j&J w. (li+ i)Z (1.24) 

for the case of a cylindrical piston moving into the gas contained outside a cylindrical 

tube of radius R,, . 
Passing in (1.23) and (1.24) to the limit, .wO being kept fixed and R, + 00 (this 

corresponds to the case when the piston surface is a plane at t = 0 ), we obtain 

limt* = 
Ro-rm 

(r’?)TV 0 

which agrees with (1.1). Addition and subtraction in (1.23) and (1.24) of the term 

W,2 R,-l (p + 1)-2 gives the corresponding quantitative correction in t* for the 
cylindrical effect, for the cases indicated above. 

Note 1.2. Estimating the order of the terms in (1.7) makes it possible to obtain 
simplified model equations valid in the neighborhood of R,. In particular 

?.Y rr - 2 (Y’W i- r-Y”,) y,,t *((r+W%++W=O 

Such equations can be employed both to construct approximate solutions, and to analyze 
the correctness of the formulation of various boundary value problems for (1.7) with the 
parameters given on R,. 
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Note 1. 3. In the one-dimensional case (f (cp) = Const, w (cp) = co&), for 
values of t close to t*, the region of application of the approximate solutions (1.19) and 
(1.20) (the neighborhood of the surface R, on the x,xe-plane) contracts and degenerates 
into a line (this follows from (1.20)), when t = t*. This is to be expected, as the 
approximate solution (1.20) was constructed using only such dynamic characteristics of 
the motion of the piston, as the velocity and acceleration. The correct transfer of the 
velocity distribution profiles near R, can be achieved for the values of t close to t* 

only by taking into account the dynamic characteristics of the order higher than that of 

acceleration, i.e. in the expression for Y (r, 9, t) the term of the order 0 (?) must 
be taken into account. This term can be computed by employing an analogous approach 

based on the assumption of sufficient smoothness of the flow near &t. In the general 
two-dimensional case, the same contraction of the region of applicability of the formulas 
(1.20) takes place at t close to t* in the neighborhood of a point on the “ix2 -plane 
corresponding to the point (cp*, t*) at which i3r/& becomes infinite. 

2. let us consider the motion near the surface fit for the three-dimensional space. 

As in the plane case, we introduce the function ‘P (ur, us, us, t) given by 

Y = ZlUl + x&J + 53u3 - 0 + Mt (2.1) 

and obtain the following equations for y : 

Ytt A + 2 12~~Y’~i - 2uiuh (I - 6ik) + (c" - ZJ~') 6ik - \k'tiYtk] Aik = 0 (2.2) 

(2.3) 

(2.4) 

y %, mp 

I I y %q mq 

ik 

A = detIjY’p,n (~*v=i,2,3), Aik = (-l)i+k 

m,nfk; m<n 

P.q#i; P<9 

Introducing the polar coordinates 

u1 = rcos cp sin 0, u2 = rsin cp sin a, u3 = rcos 

we can write (2.3) in the form 

xr=YrcOscpsinO-Y~*-j-Ya 
cos q cos 0 

r 

52 = Y, sin cpsin 0 + Yq +$- + Ye Sin q7cos ’ 

23 =Y,cose-Y+ 

e 

(2.3) 

When r = 0 , Eqs, (2.5) determine the motion of the weak discontinuity surface R, 
provided that, as in the plane case, the following limits exist 

lim r”Y, = rq (cp, 8, t), 

where 
r_rO 

liir-1Ye = re (cp, 8, t) 

r (cp, 8, t) = yy, (0, cp, % 0 

Further assumption of continuity of all fourth order derivatives of Y (r, cp, 8, t) con- 
taining second order differentiation with respect to any of its arguments yields, in analogy 
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with Sect.1. the following result. lYt = I and I’ = t j P (cp, 6) where P (rp, 0) is 
an arbitrary function determining, at t = 0, the form of the surface 5’s 

Y (r, cp, 8, t) = Y (0, V, 0, t) + rr + (2.6) 

(0 < r” < r) 

The motion of &, is determined by the following equations: 

zl=(t+P(cp,0))cosrpsin8-Ps + Pocoscpcos0 

x2 = (t + P (cp, 0)) sin cp sin 8 + P, ~+PgsincpcosCl 

x3 = (t + P (cp, 0)) cos 0 - P. sin 8 (2.9 

The approximate solution near pil as well as yrr (0, cp, 8, t) could both be obtained 
by exactly the same method as that in Sect. 1, but this approach is awkward. It appears 
that the function Yr,. (0, Cp, 6, t) can be easily found using the results of [3] concern- 
ing the problem of propagation of a weak discontinuity along the bicharacteristics cover- 
ing the characteristic surface R:. 

For the jumps in the values of the directional derivatives of Ui and c on & , the fol- 

lowing relation holds [3] : 

- ([-g] 1 [+-I, [+q, [%I, = Gl (24 

where 1 is the right null vector of the characteristic matrix of the system of gasdynamic 
equations, the symbol [af / at] denotes the difference between the limit values of the 
derivatives af / at taken at each side of Rt and o in a scalar function which can be 

obtained along a fixed bicharacteristic from the ordinary differential “transport” equa- 
tion of the jumps in the directional derivatives. It was shown in p] that, when R, moves 

across the region of rest, the bicharacteristics are straight lines and along a fixed bichar- 
acteristic (cp = cons& 8 = con&) o has the form 

-- 
a=(l/t+C1~~~+Cz[(r+l)lntdt+c,+l/t~~2)+C31}-1 (2.9) 

where time is taken as the parameter on the bicharacteristic. Here t + C, and t $- c, 
are the radii of curvature of the principal normal cross sections of the surface R,, and 
Isis an arbitrary constant. As 1 we can take 

1 = (cos cp sin 8, sin cp sin 8, cos 0, l/e (y - 1)) (2.10) 

Relations (2.8) and (2.10) yield the following value for the derivative &/al in the 

perturbed motion when T = 0 : 

adat = - (3 for F=O (2.11) 

On the other hand, using the assumptions made earlier about the function Y, we find the 
following expression for ar / azZ (r = 6) from (2.5) 

ar 1 
-=- 

at Y,, (0, ‘p, % t) 
Thus we have 

(2.12) 

‘I’,, (0, ‘P, 8, t) = l/t + R, (rp, 0) v/t + R2 ((F. 6) [(r + 1) :,: 

x In (l/t + R, (rpt 0) + lft i- R, (cp, 0)) + C^S (cp. ‘31 (2.13) 

where R, (cp, 6) and R, (rp, 0) are the radii of curvature of the principal normal cross 
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sections of the surface so, which are easily obtained provided that the function P (cp, 0) 
is given and cs (I&O) is arbitrary. The latter can be expressed, as it was done in Sect. 
1. in terms of the normal acceleration W (I-+, 0) of the surface 6, at t = 0, 

The final approximate expression for the function Y near R, is 
(2.14) 

Y (r, cp, 6, t) = K, + K,t + (t + P (cp, 6)) r + ‘/zr2 I/t + RI (cp, 6) x 

x l/t + R2 (cp, 0) I(7 + 1) In (I/t + RI (cp9 0) + 1/t + &(cpJV) $1 c (cpl w 

Passing to the. variables xi and t is effected by means of the formulas 

x1 = (t + P + rL) cos cp sin 8 - (C& + 1j2rL,) sin q/sin 8 + 
+ (Q + ‘12rL0) ~0s cp cos 8 

x2 = (t + P + rL) sin cp sin e + pDq + 1/2dQ) co.9 q/sin 8 + 
+ p. + lj2rLe) sin cp cos 8 (2.15) 

X3 = (t + P + FL) COS 8 - (me + I/&) sin 8 

where (2.16) 

L (h cp, 6) = y,, (0, CP, 6. t), c (CP, 6) = ,~ ;Hx - (r+l) ln (‘c/K +1/R,j 

Finding the smallest root of the equation L (t*, cp, 0) = 0, we obtain the f&owing 
expression for t* : 

t* = - min,,a {R, (cp, (3, R, (cp, % - Q (rp, W (2.17) 

Q(cpt 0) = -$sh tI+;Jw [Hsh K (r+i)W - Kch 
K 

(r+ i)W 3 
(2.18) 

for the case when t* < 0, W (cp, 8) > 0. Moreover K = lIJfR,R, and H = 
= _r. (1/R, + l/R,). H ere K is the Gaussian curvature and H is the mean curvature 
of th% surface So. It is assumed that, when the minimum is computed according to (2.17). 

the variables R,, R, and Wappearing in Q satisfy the relation 

For t* > 0 and w < () we obtain 

t* = min,,@Q (cp, 6) (2.20) 

If in (2.17) the minimum is reached when ( t* 1 = R,, we have the effect of focussing 
the weak discontinuity on the plane of one of the principal normal cross sections of the 
surface R,.The formulas (2.17) and (2.20) also yield the position of Rl.at which the 
potential flow begins to break down. In the one-dimensional spherical case when 

R, = R, = UK = 1/H = R = const, W = const 

we have from (2.17) and (2.20) 

t* = - Rcl -eexp (7+I)2WR), t* <0, IV>0 (2.21) 

t* = R 
2 

exp (r+i),lP,I --1 * t*>ov iv<0 (2.22) 

The case (2.21) corresponds to compression of gas contained at the initial instant within 
a sphere of radius R (piston moving into the sphere), and (2.22) corresponds to compres- 
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sion of gas by spherical piston expanding with a constant acceleration. 
Passing in (2.21) and (2.22) to the limit with R -+ co (the case of a plane, one-dimen- 

sional flow), we obtain (1.1). If the passage to the limit is executed in (2.17), (2.19) 
and (2.20) by taking one of theRi to infinity (this corresponds to the developable surfaces 

S,,), we obtain for t* the formulas (1.21) and (1.22), i. e. the expression for I* for the 
case of the developable surface s,, formally coincides with the expression for f* for the 

case of a plane parallel flow (differences in the magnitude of 1* may be caused by the 
differences in the radii of curvature in the plane and the three-dimensional case). 

Note 2.1. The above construction using the solution of the transport equation on 
the bicharacteristics does not, unfortunately, allow us to obtain simple model equations 
near R, as was done in Sect.1. It is also difficult to obtain by this method the o (r2) 
order terms in the expression for ‘1’ (r, cp, 8, 1) although this would be useful as the 
basic postulates of the Note 1.3 remain valid in the three-dimensional case. 

Note 2.2. Inserting I = t* from (1.21), (1.22) and (2.17), (2.20) into the appro- 
priate expressions for Y, and using the formula (2.4) for c’, we obtain the following 

expression for the density p in the perturbed motion: 

i 
3-T p 

p=po ii-r fTr +-e-), po = const 

valid for both, the plane and the tree-dimensional case. Identical representation is 
obtained for p (up to the o ( r2) -order terms) from the Hugoniot conditions on the weak 
shock waves as well as in one-dimensional plane flows of the Rlemann type wave Cl]. 

This fact may play a very important role in the approximate investigation of propaga- 
tion of three-dimensional weak shock waves appearing after the dlsruption of the poten- 

tial flow in the piston problem just considered, under the assumption that the flow behind 

a weak shock wave remains potential (in the one-dimensional case in [l] the propagation 
of weak shock waves was studied using simple waves). 

Note 2. 3. The approximate formulas (1.19) and (2.14) obtained for the function 
JJr can be used near H, also in the case when the piston is withdrawn from the gas, when 

the potential flow will not be disrupted. Only the cases of W < 0 t < 0 and 11’ > 0, 
t > 0 (up to the instant of focussing) should be considered. 

BIBLIOGRAPHY 

1. Courant, R. and Friedrichs, K. 0. , Supersonic Flow and Shock Waves. 

Interscience, N. Y. , 1948. 

2. Sidorov, A. F., On the gas flows near a weak shock. Dokl. Akad. Nauk SSSR, 

Vol.167, N’l, 1966. 

3. Sidorov, A. F,, Some three-dimensional gas flows adjacent to a region of rest. 
PMM Vol. 32, N’3, 1968. 

4. Sidorov, A. F., On nonstationary potential motions of a polytropic gas with a 

degenerate hodograph. PMM Vol. 23, Np5. 1959. 

Translated by L. K. 


